
Transformation of complex spherical harmonics under rotations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 15071

(http://iopscience.iop.org/1751-8121/40/50/011)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 03/06/2010 at 06:31

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/50
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 15071–15082 doi:10.1088/1751-8113/40/50/011

Transformation of complex spherical harmonics under
rotations

Zbigniew Romanowski1 and Stanislaw Krukowski1,2

1 Interdisciplinary Centre for Materials Modelling, ul. Pawinskiego 5a, 02-106 Warsaw, Poland
2 Institute of High Pressure Physics of the Polish Academy of Sciences, ul. Sokolowska 29/37,
01-142 Warsaw, Poland

E-mail: romz@wp.pl

Received 29 August 2007, in final form 23 October 2007
Published 28 November 2007
Online at stacks.iop.org/JPhysA/40/15071

Abstract
The algorithm rotating the complex spherical harmonics is presented. The
convenient and ready to use formulae for � = 0, 1, 2, 3 are listed. Any rotation
in R

3 space is determined by the rotation axis and the rotation angle. The
complex spherical harmonics defined in the fixed coordinate system is expanded
as a linear combination of the spherical harmonics defined in the rotated
coordinate system having 2� + 1 terms, which are given explicitly. The derived
formulae could be applied in quantum molecular calculations. The algorithm is
based on the Cartesian representation of the spherical harmonics. The possible
application of the algorithm to the evaluation of molecular integrals between
slater type orbitals (STO) is described.

PACS numbers: 02.70.Wz, 31.15.−p, 71.15.−m

1. Introduction

In the molecular linear combination of atomic orbitals method, the basis function is usually the
product of the radial part and spherical harmonic [1, 2]. In order to represent the wavefunction
or the molecular charge distribution, the atomic orbitals of s, p, d and f types are mainly
applied. Typically, the rotations of the atomic orbitals are required to align the local (atomic)
coordinate system axis with the unique inter-atomic direction. In the rotated coordinate system
the integral evaluation can be easily performed. Since the radial part of the atomic orbital does
not change under the rotation, only the spherical harmonic must be rotated.

The general algorithm rotating the complex spherical harmonic has been extensively
discussed in [3–5]. In these articles the rotations in R

3 space are defined by Euler angles,
and the rotated spherical harmonic is expressed as a linear combination of the spherical
harmonics in a fixed coordinate system. The expansion coefficients depend on the angular
and magnetic quantum numbers and Euler angles. Since algebraic representation of the
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expansion coefficients is lengthy, its application is inconvenient and leads to the inefficient
implementation [6], although well-documented procedures exist [7–9].

Recently, the rotation of the spherical harmonic has been discussed without the explicit
use of the Euler angles [10, 11]. In [10, 11], the rotation matrix is derived for complex and
real spherical harmonics. The elements of the rotation matrix are obtained by the recursive
relations with respect to the angular momentum number �. The presentation relies on the
recurrence relation and the integral formulae for spherical harmonics. Moreover, the elements
of the rotation matrix are determined by the matrix R, which determines the relation between
fixed, ek , and rotated, êk , coordinate system versors:

êk =
3∑

j=0

Rjkej .

Although the algorithm presented in [10, 11] is general and works for all �, its efficient
implementation is quite involved.

In the present paper, we describe the algorithm representing the complex spherical
harmonic defined in the fixed coordinate system, as a linear combination of the complex
spherical harmonic defined in the rotated coordinate system. The rotation in R

3 is represented
by the rotation axis and the rotation angle. The Euler angles are not used. The explicit algebraic
formulae are derived for expansion coefficients for angular momentum � = 0, 1, 2, 3, which
are most often used in the molecular LCAO calculations. The obtained relations are simple,
compact and contain only basic algebraic manipulations. The derivation of the expansion
coefficient is based on the Cartesian representation of the spherical harmonic.

The organization of the manuscript is as follows. In section 2.1 Cartesian representation
of the complex spherical harmonics is defined. In section 2.2 the rotations in R

3 space are
discussed. The main result is presented in section 3, which also contains the expansion
coefficient evaluated for � = 0, 1, 2, 3.

2. Definitions

2.1. Complex spherical harmonics

The complex spherical harmonics Ym
� (θ, ϕ) are defined in the spherical coordinate system

(θ, ϕ). According to the Condon–Shortley phase conventions [5, 12], the complex spherical
harmonics are defined for |m| � � as

Ym
� (θ, ϕ) = Nm

� P |m|
� (cos(θ)) eimϕ (1)

where Nm
� is a normalization factor:

Nm
� = im+|m|

[
2� + 1

4π

(� − |m|)!
(� + |m|)!

]1/2

(2)

and P |m|
� (v) is an associated Legendre function defined by Legendre polynomial P�(v), for

|v| � 1:

P |m|
� (v) = (1 − v2)|m|/2 d|m|

dv|m| P�(v)

P |m|
� (cos(θ)) = sin|m|(θ)

d|m|

d(cos(θ))|m| P�(cos(θ)).

(3)

The Legendre polynomial, P�(v), is defined by Rodrigues’ formula [13, equation (22.11)]:

P�(v) = 1

2��!

d�

dv�
(v2 − 1)� (4)
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or defined explicitly [[13], equation (22.3)]:

P�(v) =
��/2�∑
k=0

γ
(0)
�,k v�−2k (5)

where ��/2� is the largest integer number less than �/2 and

γ
(m)
�,k = (−1)k2−�

(
�

k

)(
2� − 2k

�

)
(� − 2k)!

(� − 2k − m)!
. (6)

Based on this representation one can obtain the mth derivative (for m � 0):

dm

dvm
P�(v) =

�(�−m)/2�∑
k=0

γ
(m)
�,k v�−2k−m. (7)

Since z = r cos(θ) where r2 = x2 +y2 +z2, it follows that this derivative, times an appropriate
power of r, is a simple polynomial of z variable:

r�−m dm

d(cos(θ))m
P�(cos(θ)) =

�(�−m)/2�∑
k=0

γ
(m)
�,k r2kz�−2k−m. (8)

Further, since x = r sin(θ) cos(ϕ) and y = r sin(θ) sin(ϕ), then the expression

rm sinm(θ) eimϕ = [r sin(θ) eiϕ]m = [r sin(θ)(i sin(ϕ) + cos(ϕ))]m

= [ir sin(θ) sin(ϕ) + r sin(θ) cos(ϕ)]m = (x + iy)m (9)

is a complex polynomial of x, y. Multiplying equations (8), (9) by sides and applying equations
(1), (3), we obtain

r�Ym
� (θ, ϕ) = Nm

� (x + iy)m
�(�−m)/2�∑

k=0

γ
(m)
�,k r2kz�−2k−m = r�Ym

� (x, y, z). (10)

Thus, r�Ym
� (x, y, z) is a polynomial of x, y, z. The function Ym

� (x, y, z) is a Cartesian
representation of the complex spherical harmonic. For example, for � = 1 we get

Y−1
1 (x, y, z) =

√
3/(8π)(x − iy)/r

Y 0
1 (x, y, z) =

√
3/(4π)z/r

Y 1
1 (x, y, z) = −

√
3/(8π)(x + iy)/r.

Equation (10) was proved for m � 0. Moreover, we have

Y−m
� (θ, ϕ) = (−1)m[Ym

� (θ, ϕ)]† for m � 0 (11)

where † denotes the conjugate complex. Thus, equation (10) is also valid for m < 0. In the
present manuscript the Cartesian form of the complex spherical harmonics, Ym

� (x, y, z), is
used.

2.2. Rotations in R
3

Let us introduce the Cartesian coordinate system C. Let us denote the coordinates of the point
P in C as P = (px, py, pz). Let us define the rotation axis passing through the origin of the
system C by vector u = (ux, uy, uz) of unitary length |u| = 1. Let us denote by α the rotation
angle around this axis. Then, the coordinates of the point P ′ = (p′

x, p
′
y, p

′
z), resulting from
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Figure 1. Relative position of the two Cartesian coordinate systems C and C′. Rotation of point
P creates point P ′. Rotation of C creates C′. Rotation axis points to the reader. Rotation is by
angle α.

the rotation of point P, are given by [14]

(p′
x, p

′
y, p

′
z)

T = R(u, α) · (px, py, pz)
T . (12)

The rotation matrix R(u, α) around axis u by an angle α is given as

R(u, α) =

⎡
⎢⎣

u2
x +

(
1 − u2

x

)
cα uxuy(1 − cα) − uzsα uzux(1 − cα) + uysα

uxuy(1 − cα) + uzsα u2
y +

(
1 − u2

y

)
cα uyuz(1 − cα) − uxsα

uzux(1 − cα) − uysα uyuz(1 − cα) + uxsα u2
z +

(
1 − u2

z

)
cα

⎤
⎥⎦ , (13)

where cα = cos(α) and sα = sin(α). The matrix is valid for the right-handed
coordinate systems and the counterclockwise rotation orientation. The positive rotations
are counterclockwise, if the observer looks along the u axis from its positive end toward the
origin. For example, if one wants to rotate the point Q = (qx, qy, qz) = q to be on the
coordinate axis Z, then the rotation axis u and the rotation angle α are defined as

u = q × ez

|q × ez| cos(α) = q ·ez

|q ·ez| , (14)

where ez = (0, 0, 1) denotes versor along the coordinate axis Z.
In the above, the rotation of the point in the fixed system C is described. Now, the opposite,

the coordinate system is rotated. Let us denote by C′ the new coordinate system created by
the rotation of C around the axis u by angle α, see figure 1. Let us denote by P ′ the new point
created in C by the rotation of P around the axis u by angle α. The coordinates of P ′ are given
by equation (12). It is clear that the coordinates of P ′ in C′ are equal to the coordinates of P
in C. Let us denote the coordinates of P in C′ as (p̃x, p̃y, p̃z). Then, the coordinates of P in C′

can be obtained by the rotation of P ′ by angle (−α) see [14]. Since the coordinates of P ′ in
C′ are (px, py, pz), then the coordinates of P in C′ are given by

(p̃x, p̃y, p̃z)
T = R(u,−α) · (px, py, pz)

T

(px, py, pz)
T = R−1(u,−α) · (p̃x, p̃y, p̃z)

T .
(15)

Since R(u, α) is unitary, i.e. R−1(u, α) = RT (u,−α), then

(px, py, pz)
T = RT (u,−α) · (p̃x, p̃y, p̃z)

T . (16)

The matrix RT (u,−α) is used throughout the present paper.
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3. Rotation of complex spherical harmonic in R
3

Let us introduce two coordinate systems C and C′ with a common origin. Let us define the
rotation axis u passing through the origin of C. Let us assume that C′ is created as a rotation
of C around the axis u by angle α, see figure 1. Let us introduce the point P, which in C has
the coordinates (x, y, z) = (r, θ, ϕ) and in C′ has the coordinates (x ′, y ′, z′) = (r ′, θ ′, ϕ′) and
r ′ = r . Then, based on equation (16), we have

(x, y, z)T = RT (u,−α)(x ′, y ′, z′)T . (17)

For short, let us denote the elements of the matrix RT (u,−α) as

RT (u,−α) =
⎡
⎣r1 r2 r3

r4 r5 r6

r7 r8 r9

⎤
⎦ . (18)

The goal of our investigation is to represent the value at the point P of the complex spherical
harmonic defined in C as a linear combination of the complex spherical harmonic defined in
C′. It was proved [3–5] that the sum is finite and runs over all allowed magnetic quantum
numbers, M

Ym
� (θ, ϕ) =

�∑
M=−�

d
(�)
m,MYM

� (θ ′, ϕ′). (19)

Since the complex spherical harmonics are orthonormal,∮
�

Y
m†
� (θ, ϕ)Ym′

�′ (θ, ϕ) d� = δ�,�′δm,m′ , (20)

then the expansion coefficients d
(�)
m,M fulfill the relation

�∑
M=−�

∣∣d(�)
m,M

∣∣2 = 1. (21)

Since the representations of the complex spherical harmonic in spherical and Cartesian
coordinates are equivalent, we have

Ym
� (x, y, z) =

�∑
M=−�

d
(�)
m,MYM

� (x ′, y ′, z′). (22)

From equation (17) it follows that the coordinates (x, y, z) are linear combinations of the
coordinates (x ′, y ′, z′). This property is used to obtain the coefficients d

(�)
m,M for the specific

angular quantum number �. Since the complex spherical harmonic for � = 0 is constant, then
d

(0)
0,0 = 1. The algorithm for � > 0 is as follows:

• Choose the angular quantum number � > 0.
• Select 2� + 1 canonical polynomials, Qk

�(x, y, z), of order �, for k = −�, . . . , �.
Qk

�(x, y, z) are polynomials allowing us to express spherical harmonics using Cartesian
coordinates. Express them as a linear combination of r�YM

� (x, y, z)

Qk
�(x, y, z) = r�

�∑
M=−�

a
(�)
k,MYM

� (x, y, z). (23)
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• By proper selection of Qk
�(x, y, z) we are sure that the inverse representation exists:

Ym
� (x, y, z) = r−�

�∑
k=−�

b
(�)
m,kQ

k
�(x, y, z). (24)

• Since the rotation of the coordinate system is equivalent to the multiplication by the matrix
(equation (17)), then any polynomial of order � in the rotated coordinate system is also
the polynomial of order �, hence:

Qk
�(x, y, z) =

�∑
j=−�

c
(�)
k,jQ

j

�(x
′, y ′, z′) (25)

• Substitute equation (25) into equation (24). Then, in the obtained result, substitute
equation (23) for ‘primed’ variables x ′, y ′, z′

Ym
� (x, y, z) =

�∑
k=−�

b
(�)
m,k

�∑
j=−�

c
(�)
k,j

�∑
M=−�

a
(�)
j,MYM

� (x ′, y ′, z′). (26)

Let us introduce, for fixed �, the vectors of 2� + 1 components:

y� = {
Y−m

� (x, y, z), . . . , Ym
� (x, y, z)

}T

y′
� = {

Y−m
� (x ′, y ′, z′), . . . , Ym

� (x ′, y ′, z′)
}T

q� = {
Q−m

� (x, y, z), . . . ,Qm
� (x, y, z)

}T

q′
� = {

Q−m
� (x ′, y ′, z′), . . . ,Qm

� (x ′, y ′, z′)
}T

.

(27)

Further, let us introduce the matrices A�, B�, C�, D�, which are defined by equations (23),
(24), (25), (22), respectively. Then, we have

q� = r�A�y�, y� = r−�B�q�, q� = C�q
′
�, y� = D�y

′
�. (28)

If A� is invertible, then B−1
� = A� and finally:

y� = A−1
� C�A�y

′
� �⇒ D� = A−1

� C�A�. (29)

Thus, the needed expansion coefficients, D�, are fully defined by the two square matrices A�

and C� of size 2� + 1. Matrix A� can be easily obtained from equation (23), if the explicit
representation of the canonical polynomials Qk

�(x, y, z) is known. Hence, the problem of
rotating the complex spherical harmonics has been reduced to the problem of rotating the
canonical polynomials. Matrix C� can be obtained based on the uniqueness of the polynomial
representation, formulated in the following theorem:

Theorem 1. Let p(x, y, z) and q(x, y, z) be the two polynomials of order n:

p(x, y, z) =
∑

0�i+j+k�n

pi,j,kx
iyj zk q(x, y, z) =

∑
0�i+j+k�n

qi,j,kx
iyj zk,

where pi,j,k, qi,j,k ∈ C and i, j, k � 0. If p(x, y, z) = q(x, y, z), then the coefficients are
equal: pi,j,k = qi,j,k .

This theorem, applied to the canonical polynomials for � = 1, 2, 3, leads to the compact
analytical expressions. The results are presented in the following sections.
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3.1. Expansion coefficient for � = 1

Let us introduce the canonical polynomials, Qk
1(x, y, z), for k = −1, 0, 1

Q−1
1 (x, y, z) = x Q0

1(x, y, z) = y Q1
1(x, y, z) = z. (30)

Then, based on equation (10), the matrix A1 has the form

A1 =
√

2π

3

⎡
⎣1 0 −1

i 0 i

0
√

2 0

⎤
⎦ . (31)

The matrix A1 is invertible, and to determine matrix D1 from equation (29), only the matrix
C1 is required. Since vector q1 contains only linear polynomials, equation (30), then based
on equation (17) we obtain

C1 =
⎡
⎣r1 r2 r3

r4 r5 r6

r7 r8 r9

⎤
⎦ . (32)

3.2. Expansion coefficient for � = 2

Let us introduce the canonical polynomials, Qk
2(x, y, z), for k = −2,−1, 0, 1, 2

Q−2
2 (x, y, z) = yz

Q−1
2 (x, y, z) = xz

Q0
2(x, y, z) = xy

Q1
2(x, y, z) = x2 − y2

Q2
2(x, y, z) = 2z2 − x2 − y2.

(33)

Then, based on equation (10), the mattrix A2 has the form

A2 =
√

2π

15

⎡
⎢⎢⎢⎢⎣

0 i 0 i 0
0 1 0 −1 0
i 0 0 0 −i
2 0 0 0 2
0 0 4

√
3/2 0 0

⎤
⎥⎥⎥⎥⎦ . (34)

The matrix A2 is invertible, hence only the matrix C2 is required. The elements of the matrix C2

are obtained in the following manner. Based on equation (17), express the coordinates (x, y, z)

by (x ′, y ′, z′), substitute into equation (25) and expand the left-hand side. Based on theorem
1, the coefficients for y ′z′, and x ′z′, and x ′y ′ and 2z′2 can be obtained by comparison of left-
and right-hand sides, which are the searched coefficients of Qk

2(x
′, y ′, z′) for k = −2,−1, 0, 2

(except k = 1), see equation (33). The last required coefficient for x ′2 − y ′2 is obtained by
subtracting the obtained expansion and applying theorem 1 again. The result of this procedure
is the matrix C2, presented below:

C2 =

⎡
⎢⎢⎢⎢⎢⎣

r6r8 + r5r9 r6r7 + r4r9 r5r7 + r4r8 r6r9/2 r4r7 + r6r9/2

r3r8 + r2r9 r3r7 + r1r9 r2r7 + r1r8 r3r9/2 r1r7 + r3r9/2

r3r5 + r2r6 r3r4 + r1r6 r2r4 + r1r5 r3r6/2 r1r4 + r3r6/2
v1 v2 v3 v4 v5

w1 w2 w3 w4 w5

⎤
⎥⎥⎥⎥⎥⎦

, (35)
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where the two auxiliary vectors v,w are

v =

⎡
⎢⎢⎢⎢⎢⎢⎣

2(r2r3 − r5r6)

2(r1r3 − r4r6)

2(r1r2 − r4r5)(
r2

3 − r2
6

)/
2

r2
1 − r2

4 +
(
r2

3 − r2
6

)/
2

⎤
⎥⎥⎥⎥⎥⎥⎦

w =

⎡
⎢⎢⎢⎢⎢⎢⎣

4r8r9 − 2(r2r3 + r5r6)

4r7r9 − 2(r1r3 + r4r6)

4r7r8 − 2(r1r2 + r4r5)

r2
9 − (

r2
3 + r2

6

)/
2

r2
9 − r2

1 − r2
4 + 2r2

7 − (
r2

3 + r2
6

)/
2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

3.3. Expansion coefficient for � = 3

There are two common sets of the canonical polynomials for � = 3. The results will be
presented for ‘general set’ [15]:

Q−3
3 (x, y, z) = x(4z2 − x2 − y2)

Q−2
3 (x, y, z) = y(4z2 − x2 − y2)

Q−1
3 (x, y, z) = z(2z2 − 3x2 − 3y2)

Q0
3(x, y, z) = xyz

Q1
3(x, y, z) = y(3x2 − y2)

Q2
3(x, y, z) = x(x2 − 3y2)

Q3
3(x, y, z) = z(x2 − y2).

(36)

Applying equation (10) it can be verified that the matrix A3 has the form

A3 =
√

2π

105

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 2
√

10 0 −2
√

10 0 0

0 0 2i
√

10 0 2i
√

10 0 0

0 0 0 2
√

30 0 0 0

0 i 0 0 0 −i 0
2i

√
6 0 0 0 0 0 2i

√
6

2
√

6 0 0 0 0 0 −2
√

6

0 2 0 0 0 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (37)

The matrix A3 is invertible, hence only the matrix C3 is required. In order to obtain the
elements of the matrix C3, theorem 1 is applied. First, the coordinates (x, y, z) are expressed
by (x ′, y ′, z′) and substituted into equation (25). Using expansion of the left-hand side, the
coefficients of terms 4x ′z′2, and 4y ′z′2, and 2z′3 and x ′y ′z′ could be obtained, which are the
searched coefficients of Qk

3(x
′, y ′, z′) for k = −3,−2,−1, 0 (see equation (36)). The other

three needed coefficients (for k = 1, 2, 3) are found by subtracting already obtained terms and
applying the theorem 1 to −y ′3, and x ′3 and z′x ′2. The result (not as concise as for � = 2) of
this procedure is the matrix C3 presented in the row form

C3 = [u1 u2 u3 u4 u5 u6 u7]T , (38)
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where the rows of the matrix C3 are given by vectors uT
j , for j = 1, . . . , 7 listed below:

uT
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(2r3r7 + r1r9)r9 − (
3r1r

2
3 + 2r3r4r6 + r1r

2
6

)/
4

(2r3r8 + r2r9)r9 − (
3r2r

2
3 + 2r3r5r6 + r2r

2
6

)/
4

−r3
(
r2

3 + r2
6 − 4r2

9

)/
2

−2[(3r1r2 + r4r5)r3 + (r2r4 + r1r5)r6 − 4(r3r7r8 + r2r7r9 + r1r8r9)]

r2
(
4r2

2 + 3r2
3 + 4r2

5 + r2
6 − 16r2

8 − 4r2
9

)/
4 + r3(r5r6 − 4r8r9)/2

r1
(−4r2

1 − 3r2
3 − 4r2

4 − r2
6 + 16r2

7 + 4r2
9

)/
4 − r3(r4r6 − 4r7r9)/2

r3
(−6r2

1 − 3r2
3 − 2r2

4 − 3r2
6 + 8r2

7 + 12r2
9

)/
2 − 2r1(r4r6 − 4r7r9)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

uT
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−r2
3 r4 − 2r1r3r6 − 3r4r

2
6

)/
4 + (2r6r7 + r4r9)r9(−r2

3 r5 − 2r2r3r6 − 3r5r
2
6

)/
4 + (2r6r8 + r5r9)r9

−r6
(
r2

3 + r2
6 − 4r2

9

)/
2

−2[(r2r4 + r1r5)r3 + (r1r2 + 3r4r5)r6 − 4(r6r7r8 + r5r7r9 + r4r8r9)]

r5
(
4r2

2 + r2
3 + 4r2

5 + 3r2
6 − 16r2

8 − 4r2
9

)/
4 + r6(r2r3 − 4r8r9)/2

r4
(−4r2

1 − r2
3 − 4r2

4 − 3r2
6 + 16r2

7 + 4r2
9

)/
4 − r6(r1r3 − 4r7r9)/2

r6
(−2r2

1 − 3r2
3 − 6r2

4 − 3r2
6 + 8r2

7 + 12r2
9

)/
2 − 2r4(r1r3 − 4r7r9)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

uT
3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3
[(

r2
3 + r2

6

)
r7 + 2

(
r1r3r9 + r4r6r9 − r7r

2
9

)]/
4

−3
[(

r2
3 + r2

6

)
r8 + 2

(
r2r3r9 + r5r6r9 − r8r

2
9

)]/
4

−r9
(
3r2

3 + 3r2
6 − 2r2

9

)/
2

−6[(r2r3 + r5r6)r7 + (r1r3 + r4r6)r8 + (r1r2 + r4r5 − 2r7r8)r9][
r8

(
12r2

2 + 3r2
3 + 12r2

5 + 3r2
6 − 8r2

8

)
+ 6r9(r2r3 + r5r6 − r8r9)

]/
4[

r7
(−12r2

1 − 3r2
3 − 12r2

4 − 3r2
6 + 8r2

7 + 6r2
9

) − 6r9(r1r3 + r4r6)]/4

−3r9
(
2r2

1 + 3r2
3 + 2r2

4 + 3r2
6 − 4r2

7 − 2r2
9

)/
2 − 6r7(r1r3 + r4r6)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

uT
4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(r3r6r7 + r3r4r9 + r1r6r9)/4

(r3r6r8 + r3r5r9 + r2r6r9)/4

r3r6r9/2

(r3r5 + r2r6)r7 + (r3r4 + r1r6)r8 + (r2r4 + r1r5)r9

−[r8(4r2r5 + r3r6) + r9(r3r5 + r2r6)]/4

[r7(4r1r4 + r3r6) + r9(r3r4 + r1r6)]/4

r7(r3r4 + r1r6) + r9(2r1r4 + 3r3r6)/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

uT
5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
(
r2

3 r4 + 2r1r3r6 − r4r
2
6

)/
4

3
(
r2

3 r5 + 2r2r3r6 − r5r
2
6

)/
4

r6
(
3r2

3 − r2
6

)/
2

6[r4(r2r3 − r5r6) + r1(r3r5 + r2r6)]

−r5
(
12r2

2 + 3r2
3 − 4r2

5 − 3r2
6

)/
4 − (3/2)r2r3r6

r4
(
12r2

1 + 3r2
3 − 4r2

4 − 3r2
6

)/
4 + (3/2)r1r3r6

6r1r3r4 + (3/2)r6
(
2r2

1 + 3r2
3 − 2r2

4 − r2
6

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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uT
6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
(
r1r

2
3 − 2r3r4r6 − r1r

2
6

)/
4

3
(
r2r

2
3 − 2r3r5r6 − r2r

2
6

)/
4

r3
(
r2

3 − 3r2
6

)/
2

6[r3(r1r2 − r4r5) − r6(r2r4 + r1r5)]

−r2
(
4r2

2 + 3r2
3 − 12r2

5 − 3r2
6

)/
4 + (3/2)r3r5r6

r1
(
4r2

1 + 3r2
3 − 12r2

4 − 3r2
6

)/
4 − (3/2)r3r4r6

(3/2)r3
(
2r2

1 + r2
3 − 2r2

4 − 3r2
6

) − 6r1r4r6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

uT
7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
r7

(
r2

3 − r2
6

)
+ 2r9(r1r3 − r4r6)

]/
4[

r8
(
r2

3 − r2
6

)
+ 2r9(r2r3 − r5r6)

]/
4(

r2
3 − r2

6

)
r9

/
2

2[r7(r2r3 − r5r6)r7 + r8(r1r3 − r4r6) + r9(r1r2 − r4r5)]

−r8
(
4r2

2 + r2
3 − 4r2

5 − r2
6

)/
4 − r9(r2r3 − r5r6)/2

r7
(
4r2

1 + r2
3 − 4r2

4 − r2
6

)/
4 + r9(r1r3 − r4r6)/2

r9
(
2r2

1 + 3r2
3 − 2r2

4 − 3r2
6

)/
2 + 2r7(r1r3 − r4r6)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The solution seems to be lengthy, but it is extremely simple and can be efficiently implemented,
as it contains only multiplication and addition operations.

4. Possible application

One of the possible applications of the expansion coefficient matrix for spherical harmonic,
discussed in the present manuscript, is the evaluation of the molecular integrals between slater
type orbitals (STO) [1, 2]. This subject was extensively studied by Steinbor’s group [16–20].
However, the application of rotations and reflections significantly reduces the complexity of
the problem, since the general case can be transformed to the diatomic case with the two
coordinate systems of specific mutual orientation. For this diatomic case, Roothaan’s group
developed a set of compact and efficient algorithms presented in [21–25]. The reduction to
this diatomic case is described below.

Let us introduce two Cartesian coordinate systems Ca and Cb, with origins separated by
vector q and parallel axes, as is typical configuration in quantum molecular calculations. Let
us create two spherical coordinate systems Sa and Sb, associated with Ca and Cb, respectively.
Further, let us create two atomic orbitals fa(r) = Ra(r)Y

ma

�a
(θ, ϕ), fb(r) = Rb(r)Y

mb

�b
(θ, ϕ),

centered at the origins of Sa and Sb, where Ra(r), Rb(r) : R
+ �→ R are the radial parts of

atomic orbitals.
Let us introduce two rotations, which transform Sa to S ′

a and Sb to S ′
b, such that Z axis of

S ′
a and Z axis of S ′

b align along vector q. These rotations can be accomplished according to
equation (14). After these rotations, the X, Y,Z axes of S ′

a and S ′
b are still parallel. Further,

since the X, Y,Z axes of Sa and Sb are parallel, then, according to equation (14), the rotation
angles are equal. Finally, let us introduce the reflection, and change the right-hand coordinate
system S ′

b to the left-hand coordinate system S ′′
b by changing the direction of the axis Z od S ′

b.
Then, we obtain the coordinate system which is considered in [21–25].

The rotations of spherical harmonics can be accomplished by the present algorithm. The
reflection of spherical harmonics can be easily done, if one observes that the following relations
hold:

x ′′ = x ′ y ′′ = y ′ z′′ = −z′ (39)
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r ′′ = r ′ θ ′′ = θ ′ + π ϕ′′ = ϕ′, (40)

where (x ′′, y ′′, z′′) ≡ (r ′′, θ ′′, ϕ′′) and (x ′, y ′, z′) ≡ (r ′, θ ′, ϕ′) are the coordinates of the same
point in S ′′

b and S ′
b, respectively. Since cos(θ ′ + π) = − cos(θ ′), then based on the definition

of complex spherical harmonic, equation (1), one has

Ym
� (θ ′′, ϕ′′) = Ym

� (θ ′ + π, ϕ′) = (−1)�Ym
� (θ ′, ϕ′). (41)

Hence, the complex spherical harmonic, defined in S ′′
b , is expressed by the complex spherical

harmonic defined in S ′
b. Thus, having the efficient rotation algorithm for spherical harmonic

(like the presented), one can obtain all the molecular integrals, which can be obtained for
diatomic systems.

5. Summary

In the present paper the complex spherical harmonic in the rotated coordinate system was
analyzed. The rotation is defined by the rotation axis and the rotation angle. The complex
spherical harmonic defined in the fixed coordinate system was expanded as a linear combination
of the complex spherical harmonic in the rotated coordinate system. It was proved that the
expansion coefficients matrix has the simple form D = A−1CA. Since it can be treated as a
similarity transformation, the rotation of the complex spherical harmonics can be viewed as a
three-step procedure:

(i) Express the complex spherical harmonics as the canonical polynomials.
(ii) Rotate the canonical polynomials.

(iii) Express the rotated canonical polynomials as the complex spherical harmonics.

The general algorithm was presented and the explicit form of the expansion coefficients
was evaluated for � = 0, 1, 2, 3.

Our algorithm resembles the algorithm developed in [10, 11]. However, the algorithm
developed in [10, 11] depends on the recursive relations between spherical harmonics. On
the other hand, our algorithm is based on the Cartesian representation of spherical harmonic
described in section 2.1. From the numerical point of view both algorithms are comparable
and are superior as compared to the algorithms based on Euler angles [3–5], since the factorial
terms are avoided. If one is interested in the rotation of spherical harmonics for � = 1, 2, 3,
then our method is much easier to implement. The presented algorithm requires only two
matrix multiplications D = A−1CA, where matrix A does not depend on the rotation angle.
Moreover, the expressions are compact and ready for efficient implementation.
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